







what is degrees of Sreedom? Non-Statistical Explanation 14 Students, First student => 14 Choices I bring 14 donuts. 2nd # => 13 # 1 Sor each 3rd # => 12 # i which dS=14-1=[13] Last ~ => No choice You have 7 Clean Shirts. F& Scaturday 2 choies Monday - P7 choices / Sunday No choice Tuesday -> 6 = Wednesday -> 5 = df=7-1=6

Zall2 or tall2 + Critical Volume a -> Alpha Values 0 < 1 < 1 or is called They Separate the right oven α_2 from the Signi Firance level remaining area $1-\alpha_{1/2}$. we use inunorm or invit to find them. inv Norm (Lest Avea, 0, 1), invT (lest Avea, JS) 1-42 Mal2 Zals or talz

Confidence level => middle Area
=>
$$(1 - \alpha) \cdot 100^{1/2}$$

 $\alpha/2$
 $1 - \alpha$ $\alpha/2$
 $\alpha/2$
IS $\alpha = .1$ => Confidence level = $(1 - .1) \cdot 100^{1/2} = 90^{1/2}$
IF $\alpha = .05$ => Confidence level = $(1 - .1) \cdot 100^{1/2} = 90^{1/2}$
IF $\alpha = .05$ => Confidence level = $(1 - .05) \cdot 100^{1/2} = 90^{1/2}$
IF $\alpha = .01$ => $\alpha = (1 - .05) \cdot 100^{1/2} = 90^{1/2}$
IF $\alpha = .01$ => $\alpha = (1 - .05) \cdot 100^{1/2} = 90^{1/2}$
IF $\alpha = .01$ => $\alpha = (1 - .01) \cdot 100^{1/2} = 90^{1/2}$
IF $\alpha = .01$ => $\alpha = 0$ => $(1 - .01) \cdot 100^{1/2} = 90^{1/2}$
IF $\alpha = .01$ => $\alpha = 0$ => $(1 - .01) \cdot 100^{1/2} = 90^{1/2}$
IF $\alpha = .01$ => $\alpha = 0$ => $(1 - .01) \cdot 100^{1/2} = 90^{1/2}$
IF $\alpha = .01$ => $\alpha = 0$ => $(1 - .01) \cdot 100^{1/2} = 90^{1/2}$
IF $\alpha = .01$ => $\alpha = 0$ => $(1 - .01) \cdot 100^{1/2} = 90^{1/2}$

Find
$$Z_{X/2}$$
 for 90/ C-level.
Middle Area
Z.05= invNorm(.95,0,1)
= 1.645
Sind $Z_{X/2}$ Sor 99/ C-level.
1-.99=.01
 $O_{1+2=.005}$
 $Z_{.005}= inv Norm(.995,0,1) = [2.576]$
 $Z_{.005}$

Constructing Confidence Interval For Population Proportion P: Final Ans => <P< General Sormat => P-E < P<P+E P Sample Proportion P= X ≤ Sample Size Point – estimate $\widehat{\mathbf{P}} = 1 - \widehat{\mathbf{P}}$ E Margin of error $E = Z_{ay2} \cdot \sqrt{\frac{\hat{p}\hat{q}}{n}}$ **ISTAT** Critical Value For TESTS (1-a)100% 1-PropZInt C-level.

Given N=400 X=300 C-level:9 Sind Confidence interval for pop. prop. 714 LPL .786 STAT TESTS 1-PropZInt & $E = \frac{.786 - .714}{2} = 1.036$ (we are 90% Confident that the Pop. Prop. is $\left(\begin{array}{c} P = \frac{.786 + .714}{2} = 1.75 \end{array} \right)$ Letneen 71? 279%

In a Sorvey of 320 students, 275 of them
had iPhone. n=320
2=275
Jind 98. Confidence interval for the prop. of
all students that have iPhone.
b C-level: 98 2=275 \$14 < P < .905
1- Prop ZINT n=320
C-level: 98 E= .905 - .814 = .046
We are 95. Consident that
$$P=\frac{.905 + .814}{2} = .046$$

We are 95. Consident that $P=\frac{.905 + .814}{2} = .046$
between 81.7 to 91.7.05
all students have iPhone.

I Surveyed 250 Students and 6% of them
were left-handed.
$$n=250$$
 $\hat{P}=.06$
 $z=n\hat{P}=250(.06)=15$
is decimal -> Round-up
find Considence interval for the prop of all
Students that are left-handed.
NO C-level I-PropZInt $\overline{.03|\langle P\langle.089|}$
=> Use .95
we are 95% Consident $E=\frac{.089}{2}=.029$
we are 95% consident $\hat{P}=.089 \pm .031 = .06$
of all students are
left-handed.

Given:
$$M=35$$
 $\overline{\mathcal{X}}=125$ $T=15$
C-level: .9
Sind Confidence interval for pop. mean \mathcal{U} .
U Known=> ZInterval
inpt: Stats
 $V=15$
 $\chi=125$
 $M=35$
C-level: .9
C-

Г

Lisa Surveyed 25 nurses, and discovered their monthly Salary was \$6250. n=25 $\bar{\chi}=6250$ It is known that Standard deviation of Salaries of all nurses is \$400. J=400 Sind 99%. Confidence interval for the mean salary of all nurses. 60B9 < M<6456.1 -> C-level: .99 6044 < M<6456 T known => ZInterval E= 6456-6044 2-222 $\overline{\chi} = \frac{6456 + 6044}{2} = 6250$

Even:
$$m = 18$$
 $7=30.5$ $S=8.2$
C-level: $.98$ $df=18-1=17$
Sind Confidence interval for Pop. mean M_0
Unknown = TInterval $35.539 < M < 35.461$
Since $\overline{\chi}$ is in 1 decimal
Round to 1-decimal
 $\overline{25.5} < M < 35.5$
 $E=\frac{35.5-25.5}{2}=5$
 $\overline{\chi}=\frac{35.5+25.5}{2}=305$

10 randomly selected SAT exams had a mean of 1185 and Standard deviation n=10 of 100. Z=1185 S=100 Sind, Confidence interval for the mean of all SAT exams. 1113.5 4 (1256.5 DNO C-level 7 USE .95 1114 KM<1257 (Unknown => TInter